Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Clin Invest ; 133(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37183815

RESUMO

Spastic paraplegia 50 (SPG50) is a rare neurodegenerative disease caused by loss-of-function mutations in AP4M1. There are no effective treatments for SPG50 or any other type of SPG, and current treatments are limited to symptomatic management. In this issue of the JCI, Chen et al. provide promising data from preclinical studies that evaluated the efficacy and safety profiles of an AAV-mediated AP4M1 gene replacement therapy for SPG50. AAV/AP4M1 gene replacement partly rescued functional defects in SPG50 cellular and mouse models, with acceptable safety profiles in rodents and monkeys. This work represents a substantial advancement in therapeutic development of SPG50 treatments, establishing the criteria for taking AAV9/AP4M1 gene therapy to clinical trials.


Assuntos
Doenças Neurodegenerativas , Paraplegia Espástica Hereditária , Animais , Camundongos , Mutação , Paraplegia/genética , Paraplegia/terapia , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/terapia
2.
Sci Signal ; 14(706): eabe3410, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34699250

RESUMO

In response to microbes and other danger signals, the NLRP3 inflammasome in immune cells triggers the activation of the protease caspase-1, which mediates the maturation of the inflammatory cytokine IL-1ß. Here, we investigated how the NLRP3 inflammasome is regulated. We found that its activation in primary mouse macrophages induced the Src family kinase Lyn to phosphorylate NLRP3 at Tyr918, which correlated with a subsequent increase in its ubiquitination that facilitated its proteasome-mediated degradation. NLRP3 tyrosine phosphorylation and ubiquitination was abrogated in Lyn-deficient macrophages, which produced increased amounts of IL-1ß. Furthermore, mice lacking Lyn were more susceptible to LPS-induced septic shock in an NLRP3-dependent manner. Our data demonstrate that Lyn-mediated tyrosine phosphorylation is a prerequisite for the ubiquitination that dampens NLRP3 inflammasome activity.


Assuntos
Inflamassomos , Quinases da Família src , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fosforilação , Transdução de Sinais , Tirosina/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
3.
Neurol Genet ; 7(1): e555, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33977141
4.
Commun Biol ; 4(1): 396, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767386

RESUMO

CRISPR/Cas9-mediated genome editing provides potential for therapeutic development. Efficacy and long-term safety represent major concerns that remain to be adequately addressed in preclinical studies. Here we show that CRISPR/Cas9-mediated genome editing in two distinct SOD1-amyotrophic lateral sclerosis (ALS) transgenic mouse models prevented the development of ALS-like disease and pathology. The disease-linked transgene was effectively edited, with rare off-target editing events. We observed frequent large DNA deletions, ranging from a few hundred to several thousand base pairs. We determined that these large deletions were mediated by proximate identical sequences in Alu elements. No evidence of other diseases was observed beyond 2 years of age in these genome edited mice. Our data provide preclinical evidence of the efficacy and long-term safety of the CRISPR/Cas9 therapeutic approach. Moreover, the molecular mechanism of proximate identical sequences-mediated recombination provides mechanistic information to optimize therapeutic targeting design, and to avoid or minimize unintended and potentially deleterious recombination events.


Assuntos
Esclerose Lateral Amiotrófica/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/estatística & dados numéricos , Superóxido Dismutase-1/genética , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo
5.
iScience ; 24(2): 102061, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33659869

RESUMO

Mutations in coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) have been identified in patients suffering from various degenerative diseases including mitochondrial myopathy, spinal muscular atrophy Jokela type, frontotemporal dementia, and/or amyotrophic lateral sclerosis (ALS). The pathogenic mechanism underlying CHCHD10-linked divergent disorders remains largely unknown. Here we show that transgenic mice overexpressing an ALS-linked CHCHD10 p.R15L mutation leads to an abbreviated lifespan compared with CHCHD10-WT transgenic mice. The occurrence and severity of the phenotype correlates to transgene copy number. Central nervous system (CNS), skeletal muscle, and cardiac pathology is apparent in CHCHD10-R15L transgenic mice. Despite the pathology, CHCHD10-R15L transgenic mice perform comparably to control mice in motor behavioral tasks until very close to death. Although paralysis is not observed, these models provide insight into the pleiotropic nature of CHCHD10 and suggest a contribution of CNS, skeletal muscle, and cardiac pathology to CHCHD10 p.R15L-ALS pathogenesis.

6.
Neuromolecular Med ; 22(1): 68-72, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31468327

RESUMO

Mutations in TRPV4 are linked to a group of clinically distinct, but also overlapping axonal neuropathies, including Charcot-Marie-Tooth disease type 2C (CMT2C), scapuloperoneal spinal muscular atrophy, and congenital distal spinal muscular atrophy. The incidence of TRPV4-linked cases ranges from 0 to 7% in overall axonal neuropathy cohorts from European countries and Australia. However, the data from other areas remain largely unknown. In this study, we screened for TRPV4 mutations in a well-characterized USA cohort of 62 unrelated CMT2 patients without mutations in MFN2, GARS, NEFL, and GDAP1. All 15 coding exons of TRPV4 were analyzed by Sanger-sequencing. Clinical features of TRPV4-linked patients were compared with those lacking TRPV4 mutations. We identified two TRPV4 mutations in two patients. A TRPV4-R316C was identified in a patient with family history, while a TRPV4-R269C in an apparently sporadic case. Marked clinical variations were observed in the patients with TRPV4 mutations. Our data suggest that TRPV4-linked CMT2C accounts for a sizable fraction in this USA cohort of CMT2; it has a wide phenotypic spectrum, and vocal cord paralysis, scapular weakness and wasting, skeletal dysplasia, and hearing loss are suggestive signs for TRPV4-linked CMT2C.


Assuntos
Doença de Charcot-Marie-Tooth/epidemiologia , Atrofia Muscular Espinal/epidemiologia , Mutação , Canais de Cátion TRPV/genética , Adulto , Axônios/patologia , Doenças do Desenvolvimento Ósseo/etiologia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Éxons/genética , Feminino , Aconselhamento Genético , Perda Auditiva/etiologia , Humanos , Incidência , Masculino , Debilidade Muscular/etiologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatologia , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Mutação Puntual , Canais de Cátion TRPV/deficiência , Estados Unidos/epidemiologia , Paralisia das Pregas Vocais/etiologia
7.
J Immunol ; 203(8): 2239-2251, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31501257

RESUMO

Glutathione reductase (Gsr) catalyzes the reduction of glutathione disulfide to glutathione, which plays an important role in redox regulation. We have previously shown that Gsr facilitates neutrophil bactericidal activities and is pivotal for host defense against bacterial pathogens. However, it is unclear whether Gsr is required for immune defense against fungal pathogens. It is also unclear whether Gsr plays a role in immunological functions outside of neutrophils during immune defense. In this study, we report that Gsr-/- mice exhibited markedly increased susceptibility to Candida albicans challenge. Upon C. albicans infection, Gsr-/- mice exhibited dramatically increased fungal burden in the kidneys, cytokine and chemokine storm, striking neutrophil infiltration, histological abnormalities in both the kidneys and heart, and substantially elevated mortality. Large fungal foci surrounded by massive numbers of neutrophils were detected outside of the glomeruli in the kidneys of Gsr -/- mice but were not found in wild-type mice. Examination of the neutrophils and macrophages of Gsr-/- mice revealed several defects. Gsr -/- neutrophils exhibited compromised phagocytosis, attenuated respiratory burst, and impaired fungicidal activity in vitro. Moreover, upon C. albicans stimulation, Gsr -/- macrophages produced increased levels of inflammatory cytokines and exhibited elevated p38 and JNK activities, at least in part, because of lower MAPK phosphatase (Mkp)-1 activity and greater Syk activity. Thus, Gsr-mediated redox regulation is crucial for fungal clearance by neutrophils and the proper control of the inflammatory response by macrophages during host defense against fungal challenge.


Assuntos
Candida albicans/metabolismo , Candidíase/metabolismo , Glutationa Redutase/metabolismo , Inflamação/metabolismo , Animais , Candida albicans/patogenicidade , Glutationa Redutase/deficiência , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Neutrófilos/metabolismo
8.
Neurol Genet ; 5(3): e326, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31321299
9.
Genet Med ; 21(5): 1209-1217, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31048812

RESUMO

PURPOSE: Comorbid familial nonobstructive azoospermia (NOA) and congenital cataract (CC) have not been reported previously, and no single human gene has been associated with both diseases in humans. Our purpose was to uncover novel human mutations and genes causing familial NOA and CC. METHODS: We performed whole-exome sequencing for two brothers with both NOA and CC from a consanguineous family. Mutation screening of TDRD7 was performed in another similar consanguineous family and 176 patients with azoospermia or CC alone and 520 healthy controls. Histological analysis was performed for the biopsied testicle sample in one patient, and knockout mice were constructed to verify the phenotype of the mutation in TDRD7. RESULTS: Two novel loss-of-function mutations (c.324_325insA (T110Nfs*30) and c.688_689insA (p.Y230X), respectively) of TDRD7 were found in the affected patients from the two unrelated consanguineous families. Histological analysis demonstrated a lack of mature sperm in the male patient's seminiferous tubules. The mutations were not detected in patients with CC or NOA alone. Mice with Tdrd7 gene disrupted at a similar position precisely replicated the human syndrome. CONCLUSION: We identified TDRD7 causing CC as a new pathogenic gene for male azoospermia in human, with an autosomal recessive mode of inheritance.


Assuntos
Azoospermia/genética , Catarata/genética , Ribonucleoproteínas/genética , Adulto , Animais , Azoospermia/diagnóstico , Humanos , Mutação com Perda de Função/genética , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mutação , Linhagem , Ribonucleoproteínas/metabolismo , Irmãos , Espermatozoides , Testículo , Sequenciamento do Exoma/métodos
11.
Elife ; 62017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28463106

RESUMO

Over 170 different mutations in the gene encoding SOD1 all cause amyotrophic lateral sclerosis (ALS). Available studies have been primarily focused on the mechanisms underlying mutant SOD1 cytotoxicity. How cells defend against the cytotoxicity remains largely unknown. Here, we show that misfolding of ALS-linked SOD1 mutants and wild-type (wt) SOD1 exposes a normally buried nuclear export signal (NES)-like sequence. The nuclear export carrier protein CRM1 recognizes this NES-like sequence and exports misfolded SOD1 to the cytoplasm. Antibodies against the NES-like sequence recognize misfolded SOD1, but not native wt SOD1 both in vitro and in vivo. Disruption of the NES consensus sequence relocalizes mutant SOD1 to the nucleus, resulting in higher toxicity in cells, and severer impairments in locomotion, egg-laying, and survival in Caenorhabditis elegans. Our data suggest that SOD1 mutants are removed from the nucleus by CRM1 as a defense mechanism against proteotoxicity of misfolded SOD1 in the nucleus.


Assuntos
Transporte Ativo do Núcleo Celular , Carioferinas/metabolismo , Dobramento de Proteína , Receptores Citoplasmáticos e Nucleares/metabolismo , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/toxicidade , Motivos de Aminoácidos , Animais , Caenorhabditis elegans , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/toxicidade , Ligação Proteica , Sinais Direcionadores de Proteínas , Superóxido Dismutase-1/química , Proteína Exportina 1
12.
Elife ; 62017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28463112

RESUMO

The etiological underpinnings of amyotrophic lateral sclerosis (ALS) are complex and incompletely understood, although contributions to pathogenesis by regulators of proteolytic pathways have become increasingly apparent. Here, we present a novel variant in UBQLN4 that is associated with ALS and show that its expression compromises motor axon morphogenesis in mouse motor neurons and in zebrafish. We further demonstrate that the ALS-associated UBQLN4 variant impairs proteasomal function, and identify the Wnt signaling pathway effector beta-catenin as a UBQLN4 substrate. Inhibition of beta-catenin function rescues the UBQLN4 variant-induced motor axon phenotypes. These findings provide a strong link between the regulation of axonal morphogenesis and a new ALS-associated gene variant mediated by protein degradation pathways.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteínas de Transporte/genética , Morfogênese , Neurônios Motores/citologia , Proteínas Nucleares/genética , Animais , Modelos Animais de Doenças , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Peixe-Zebra , beta Catenina/metabolismo
13.
Hum Mol Genet ; 26(10): 1915-1926, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28369333

RESUMO

Age-dependent elevation in mitochondrial oxidative stress is widely posited to be a major factor underlying the loss of substantia nigra pars compacta (SNc) dopaminergic neurons in Parkinson's disease (PD). However, mechanistic links between aging and oxidative stress are not well understood. Sirtuin-3 (Sirt3) is a mitochondrial deacetylase that could mediate this connection. Indeed, genetic deletion of Sirt3 increased oxidative stress and decreased the membrane potential of mitochondria in SNc dopaminergic neurons. This change was attributable to increased acetylation and decreased activity of manganese superoxide dismutase (MnSOD). Site directed mutagenesis of lysine 68 to glutamine (K68Q), mimicking acetylation, decreased MnSOD activity in SNc dopaminergic neurons, whereas mutagenesis of lysine 68 to arginine (K68R), mimicking deacetylation, increased activity. Introduction of K68R MnSOD rescued mitochondrial redox status and membrane potential of SNc dopaminergic neurons from Sirt3 knockouts. Moreover, deletion of DJ-1, which helps orchestrate nuclear oxidant defenses and Sirt3 in mice led to a clear age-related loss of SNc dopaminergic neurons. Lastly, K68 acetylation of MnSOD was significantly increased in the SNc of PD patients. Taken together, our studies suggest that an age-related decline in Sirt3 protective function is a major factor underlying increasing mitochondrial oxidative stress and loss of SNc dopaminergic neurons in PD.


Assuntos
Sirtuína 3/metabolismo , Superóxido Dismutase/genética , Acetilação , Fatores Etários , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Mutagênese Sítio-Dirigida , Oxidantes/farmacologia , Oxirredução , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Doença de Parkinson/genética , Sirtuína 3/genética , Substância Negra/metabolismo , Superóxido Dismutase/metabolismo
14.
Hum Mol Genet ; 26(4): 729-741, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28115417

RESUMO

TMEM230 is a newly identified Parkinson's disease (PD) gene encoding a transmembrane protein whose cellular and pathogenic roles remain largely unknown. Here, we demonstrate that loss of TMEM230 disrupts retromer cargo CI-M6PR (cation-independent mannose 6-phosphate receptor) trafficking and autophagic cargo degradation rates. TMEM230 depletion further inhibits extracellular secretion of the autophagic cargo p62 and immature lysosomal hydrolases in Golgi-derived vesicles leading to their intracellular accumulation, and is specifically mediated by loss of the small GTPase Rab8a. Importantly, PD-linked TMEM230 variants also induce retromer mislocalization, defective cargo trafficking, and impaired autophagy. Finally, we show that knockdown of another PD gene, LRRK2, which phosphorylates Rab8a, similarly impairs retromer trafficking, secretory autophagy and Golgi-derived vesicle secretion, thus demonstrating converging roles of two PD genes TMEM230 and LRRK2 on Rab8a function, and suggesting that retromer and secretory dysfunction play an important role in PD pathogenesis.


Assuntos
Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Doença de Parkinson/metabolismo , Vesículas Secretórias/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Células COS , Chlorocebus aethiops , Complexo de Golgi/genética , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteínas de Membrana/genética , Doença de Parkinson/genética , Fosforilação/genética , Vesículas Secretórias/genética , Extratos do Timo , Proteínas rab de Ligação ao GTP/genética
15.
Front Cell Neurosci ; 10: 216, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27703430

RESUMO

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are believed to represent the different outcomes of a common pathogenic mechanism. However, while researchers have intensely studied the involvement of motor neurons in the ALS/FTD syndrome, very little is known about the function of hippocampal neurons, although this area is critical for memory and other cognitive functions. We investigated the electrophysiological properties of CA1 pyramidal cells in slices from 1 month-old UBQLN2P497H mice, a recently generated model of ALS/FTD that shows heavy depositions of ubiquilin2-positive aggregates in this brain region. We found that, compared to wild-type mice, cells from UBQLN2P497H mice were hypo-excitable. The amplitude of the glutamatergic currents elicited by afferent fiber stimulation was reduced by ~50%, but no change was detected in paired-pulse plasticity. The maximum firing frequency in response to depolarizing current injection was reduced by ~30%; the fast afterhyperpolarization in response to a range of depolarizations was reduced by almost 10 mV; the maximum slow afterhyperpolarization (sAHP) was also significantly decreased, likely in consequence of the decreased number of spikes. Finally, the action potential (AP) upstroke was blunted and the threshold depolarized compared to controls. Thus, synaptic and intrinsic excitability are both impaired in CA1 pyramidal cells of UBQLN2P497H mice, likely constituting a cellular mechanism for the cognitive impairments. Because these alterations are detectable before the establishment of overt pathology, we hypothesize that they may affect the further course of the disease.

16.
Nat Genet ; 48(7): 733-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27270108

RESUMO

Parkinson's disease is the second most common neurodegenerative disorder without effective treatment. It is generally sporadic with unknown etiology. However, genetic studies of rare familial forms have led to the identification of mutations in several genes, which are linked to typical Parkinson's disease or parkinsonian disorders. The pathogenesis of Parkinson's disease remains largely elusive. Here we report a locus for autosomal dominant, clinically typical and Lewy body-confirmed Parkinson's disease on the short arm of chromosome 20 (20pter-p12) and identify TMEM230 as the disease-causing gene. We show that TMEM230 encodes a transmembrane protein of secretory/recycling vesicles, including synaptic vesicles in neurons. Disease-linked TMEM230 mutants impair synaptic vesicle trafficking. Our data provide genetic evidence that a mutant transmembrane protein of synaptic vesicles in neurons is etiologically linked to Parkinson's disease, with implications for understanding the pathogenic mechanism of Parkinson's disease and for developing rational therapies.


Assuntos
Predisposição Genética para Doença , Proteínas de Membrana/genética , Mutação/genética , Neurônios/patologia , Doença de Parkinson/genética , Vesículas Sinápticas/patologia , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Linhagem , Transporte Proteico/genética , Homologia de Sequência de Aminoácidos , Vesículas Sinápticas/metabolismo
17.
PLoS One ; 11(5): e0155180, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27223613

RESUMO

Camptodactyly is a digit deformity characterized by permanent flexion contracture of one or both fifth fingers at the proximal interphalangeal joints. Though over 60 distinct types of syndromic camptodactyly have been described, only one disease locus (3q11.2-q13.12) for nonsyndromic camptodactyly has been identified. To identify the genetic defect for camptodactyly in a four-generation Chinese Han family, exome and Sanger sequencings were conducted and a missense variant, c.1016C>T (p.S339L), in the talin 2 gene (TLN2) was identified. The variant co-segregated with disease in the family and was not observed in 12 unaffected family members or 1,000 normal controls, suggesting that p.S339L is a pathogenic mutation. Two asymptomatic carriers in the family indicated incomplete penetrance or more complicated compensated mechanism. Most of p.S339L carriers also have relatively benign cardiac phenotypes. Expression of wild and mutant TLN2 in HEK293 cells suggested the predominant localization in cytoplasm. Our data suggest a potential molecular link between TLN2 and camptodactyly pathogenesis.


Assuntos
Exoma , Deformidades Congênitas da Mão , Mutação de Sentido Incorreto , Linhagem , Talina , Adulto , Substituição de Aminoácidos , Povo Asiático , China , Citoplasma/genética , Citoplasma/metabolismo , Feminino , Dedos/anormalidades , Células HEK293 , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/metabolismo , Deformidades Congênitas da Mão/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Transporte Proteico/genética , Talina/genética , Talina/metabolismo
18.
Neurol Genet ; 2(2): e60, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27123479

RESUMO

OBJECTIVE: To identify the genetic defect for adult-onset primary lateral sclerosis (PLS) in a family with 5 patients. METHODS: Whole-exome sequencing was performed to identify the shared genetic variants in 3 affected members in a PLS family with 5 affected individuals. Sanger sequencing was used for validation of the variants and for cosegregation analysis. Mitochondrial activity for both patients and unaffected siblings was measured using a SeaHorse metabolic analyzer. RESULTS: Whole-exome sequencing and subsequent cosegregation analysis demonstrated that compound heterozygous missense variants L695P and I743T in SPG7 were the only mutations cosegregating with the disease in an autosomal recessive fashion in this family. The parents and siblings are genetically heterozygous and clinically unaffected. Functional studies suggested that the PLS-associated SPG7 mutants affect mitochondrial function when glucose is reduced. CONCLUSIONS: Compound heterozygote mutations in SPG7 are associated with adult-onset PLS, extending the spectrum of SPG7-linked neurologic diseases. Patients with the PLS phenotype should have genetic testing for paraplegin, especially when the condition is familial.

20.
Neurogenetics ; 16(1): 1-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25193783

RESUMO

Mitochondrial myopathies belong to a larger group of systemic diseases caused by morphological or biochemical abnormalities of mitochondria. Mitochondrial disorders can be caused by mutations in either the mitochondrial or nuclear genome. Only 5% of all mitochondrial disorders are autosomal dominant. We analyzed DNA from members of the previously reported Puerto Rican kindred with an autosomal dominant mitochondrial myopathy (Heimann-Patterson et al. 1997). Linkage analysis suggested a putative locus on the pericentric region of the long arm of chromosome 22 (22q11). Using the tools of integrative genomics, we established chromosome 22 open reading frame 16 (C22orf16) (later designated as CHCHD10) as the only high-scoring mitochondrial candidate gene in our minimal candidate region. Sequence analysis revealed a double-missense mutation (R15S and G58R) in cis in CHCHD10 which encodes a coiled coil-helix-coiled coil-helix protein of unknown function. These two mutations completely co-segregated with the disease phenotype and were absent in 1,481 Caucasian and 80 Hispanic (including 32 Puerto Rican) controls. Expression profiling showed that CHCHD10 is enriched in skeletal muscle. Mitochondrial localization of the CHCHD10 protein was confirmed using immunofluorescence in cells expressing either wild-type or mutant CHCHD10. We found that the expression of the G58R, but not the R15S, mutation induced mitochondrial fragmentation. Our findings identify a novel gene causing mitochondrial myopathy, thereby expanding the spectrum of mitochondrial myopathies caused by nuclear genes. Our findings also suggest a role for CHCHD10 in the morphologic remodeling of the mitochondria.


Assuntos
Miopatias Mitocondriais/genética , Proteínas Mitocondriais/genética , Mutação , Cromossomos Humanos Par 22 , Família , Feminino , Genes Dominantes , Humanos , Masculino , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Porto Rico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA